Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials.

نویسندگان

  • Moussab Harb
  • Dilshad Masih
  • Kazuhiro Takanabe
چکیده

We present a joint theoretical and experimental investigation of the optoelectronic properties of CuVO3, CuNbO3 and Cu5Ta11O30 materials for potential photocatalytic and solar cell applications. In addition to the experimental results obtained by powder X-ray diffraction and UV-Vis spectroscopy of the materials synthesized under flowing N2 gas at atmospheric pressure via solid-state reactions, the electronic structure and the UV-Vis optical absorption coefficient of these compounds are predicted with high accuracy using advanced first-principles quantum methods based on DFT (including the perturbation theory approach DFPT) within the screened coulomb hybrid HSE06 exchange-correlation formalism. The calculated density of states are found to be in agreement with the UV-Vis diffuse reflectance spectra, predicting a small indirect band gap of 1.4 eV for CuVO3, a direct band gap of 2.6 eV for CuNbO3, and an indirect (direct) band gap of 2.1 (2.6) eV for Cu5Ta11O30. It is confirmed that the Cu(I)-based multi-metal oxides possess a strong contribution of filled Cu(I) states in the valence band and of empty d(0) metal states in the conduction band. Interestingly, CuVO3 with its predicted small indirect band gap of 1.4 eV shows the highest absorption coefficient in the visible range with a broad absorption edge extending to 886 nm. This novel result offers a great opportunity for this material to be an excellent candidate for solar cell applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations

In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...

متن کامل

New Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations

In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...

متن کامل

Investigation of N-doped Graphene as an Absorbent for some Gases: A DFT Study

At the present theoretical study, DFT calculations were performed for elucidating thereaction, absorption energy and the quantum molecular descriptors including electronic chemical potential, chemical hardness, Homo, Lumo, band gap energy (Eg) and finding the most active nitrogen-doped graphene sheet (N-G) for absorption H2S, CH4, N2 and CO2 gases. Finally it found that nitrogen-doped gra...

متن کامل

Hydrothermal Synthesis, Characterization, Optical Properties of Lithium Meta- and Disilicate Nanomaterials and Theoretical Calculations

Highly crystalline and pure lithium metasilicate (Li2SiO3) and lithium disilicate (Li2Si2O5) nanomaterials were synthesized by hydrothermal method and characterized by PXRD technique. The changes in the morphology and particle size of the synthesized nanomaterials with reaction time were investigated using SEM technique. The UV-Vis and photoluminescence spectra of the compounds were studied. Th...

متن کامل

Hydrothermal Synthesis, Characterization, Optical Properties of Lithium Meta- and Disilicate Nanomaterials and Theoretical Calculations

Highly crystalline and pure lithium metasilicate (Li2SiO3) and lithium disilicate (Li2Si2O5) nanomaterials were synthesized by hydrothermal method and characterized by PXRD technique. The changes in the morphology and particle size of the synthesized nanomaterials with reaction time were investigated using SEM technique. The UV-Vis and photoluminescence spectra of the compounds were studied. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 16 34  شماره 

صفحات  -

تاریخ انتشار 2014